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Abstract

A fast and objective chemometric classification method is developed and applied to the analysis of gas chromatography (GC) data from five
commercial gasoline samples. The gasoline samples serve as model mixtures, whereas the focus is on the development and demonstration
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f the classification method. The method is based on objective retention time alignment (referred to as piecewise alignment) co
nalysis of variance (ANOVA) feature selection prior to classification by principal component analysis (PCA) using optimal parame
egree-of-class-separation is used as a metric to objectively optimize the alignment and feature selection parameters using a suit
et thereby reducing user subjectivity, as well as to indicate the success of the PCA clustering and classification. The degree-of-clas
s calculated using Euclidean distances between the PCA scores of a subset of the replicate runs from two of the five fuel typ
raining set. The unaligned training set that was directly submitted to PCA had a low degree-of-class-separation (0.4), and the P
lot for the raw training set combined with the raw test set failed to correctly cluster the five sample types. After submitting the tra

o piecewise alignment, the degree-of-class-separation increased (1.2), but when the same alignment parameters were applied t
et combined with the test set, the scores plot clustering still did not yield five distinct groups. Applying feature selection to the
raining set increased the degree-of-class-separation (4.8), but chemical variations were still obscured by retention time variation a
ame feature selection conditions were used for the training set combined with the test set, only one of the five fuels was clustere
owever, piecewise alignment coupled with feature selection yielded a reasonably optimal degree-of-class-separation for the

9.2), and when the same alignment and ANOVA parameters were applied to the training set combined with the test set, the PCA
orrectly classified the gasoline fingerprints into five distinct clusters.
2005 Elsevier B.V. All rights reserved.
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. Introduction

There is a need for efficient data processing methods for
he large volumes of data produced by modern analytical
nstruments. For many applications, the analyst must com-
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press such large volumes of data while retaining the ess
information in order to classify samples, do long-term c
parisons, or perform batch-to-batch reproducibility stud
Analysts dealing with large data sets of micro-arrays[1],
spectroscopic profiles[2,3] and 2D images[4,5] use fea
ture selection methods to reduce data sets down to fea
containing the essential information. Chemometric pa
recognition methods are then used to classify the red
data set. However, application of feature selection and
tern recognition methodologies is limited in chromatog
phy by uncontrollable retention time variations that obs
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chemical variations in the data[6–14]. Retention time vari-
ations can be due to subtle, random, and often unavoidable
variations in instrument parameters. Pressure, temperature
and flow rate fluctuations may cause an analyte to elute at a
different retention time in replicate runs[12]. Matrix effects
and stationary phase decomposition may also cause retention
time shifting. Ideally, one would want a comprehensive data
analysis procedure that combines retention time alignment
with feature selection and chemometric pattern recognition
in order to classify large data sets of complex chromatograms
with objectively optimized parameters.

Many retention time alignment algorithms have been re-
ported. Some alignment algorithms operate by aligning spe-
cific features in the data[13,15]. However, there are many
available alignment algorithms that, like piecewise alignment
reported herein, do not require knowledge or identification of
peaks. These algorithms contain some level of dynamic pro-
gramming where iterated shifts are evaluated by a matching
metric between the sample and target chromatogram. The
matching metric indicates an optimal retention time correc-
tion for the sample. These algorithms fall under the categories
of dynamic time warping[6,16,17], genetic algorithms[8],
partial linear fit and minimization of residuals[9,10], correla-
tion optimized warping (COW)[11], and local retention time
alignment, also referred to as peakmatch alignment[12]. The
piecewise alignment algorithm applied in this report is a form
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matograms and fewer sample classes than the entire data set
(test set) of chromatograms to be evaluated.

This report is organized to describe the data reduction and
classification method following the steps outlined inFig. 1.
Initially, the piecewise alignment parameters and ANOVA-
based feature selection conditions are optimized using a suit-
able training set and the degree-of-class-separation metric.
ANOVA-based feature selection is used to objectively select
portions of the training set as a function of retention time.
Then, the unknown test set is aligned using the optimal pa-
rameters. Next, the features that were selected in the training
set are extracted from the test set. PCA is then applied for
optimal classification of the test set. Classification is based
on clustering in the scores plot. Finally, descriptions of clas-
sification results using piecewise alignment alone or feature
selection alone are included to demonstrate the benefits of
combining retention time alignment with ANOVA feature se-
lection in order to allow PCA to focus on class variations. The
reported classification method results are compared to linear
discriminant analysis (LDA) at each stage of processing the
data.

2. Theory

The following subsections describe the algorithms applied
f
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OW algorithm. COW operates by subdividing the data

ocal regions, or windows, which are iteratively stretched
ompressed by interpolation so as to maximize the correl
etween the sample and target chromatograms. COW

o find the global arrangement of stretches and shrinks
aximize correlation between the target and sample
atograms[11,16]. Piecewise alignment is related to CO

n that it operates by subdividing the data into windows,
hen each window is iteratively shifted along the target c
atogram within a specified limit to find the maximum c

elation and the best correction for each window. Thu
omparison to COW, piecewise alignment does not appl
tretching and shrinking interpolation step just prior to
ulating the correlation, thus saving computation time.

Herein, we introduce a data analysis procedure fo
ucing and classifying chromatographic data involving

ention time alignment, feature selection and chemom
attern recognition with objectively optimized paramet
he piecewise retention time alignment algorithm is dem
trated to quickly provide retention time corrections fo

arge GC data set of gasoline samples. It is shown that a
ent combined with analysis of variance (ANOVA) feat

election and submission to principal component ana
PCA) yields proper classification of unknown gasoline c
atograms. In order to make the method more robust,

riendly and rapid to implement, it is demonstrated that
bjective selection of alignment parameters and featur

ection conditions can be achieved using a suitable tra
et containing a substantially smaller number of GC c
or the classification method reported herein.

.1. Principal component analysis (PCA)

PCA is a data mining tool that is useful for providing u
upervised visual classification of multivariate data like
ata[18,19]. PCA converts each chromatographic vector
single point in principal component space, essentially

ecting the data onto a new set of orthogonal axes (prin
omponents, i.e., PCs) that are sorted in order accordi
he amount of variance captured. If the captured vari
s relevant to chemical variations and sample classifica
imilar sample scores should cluster together on a score
f PC 1 versus PC 2.

.2. Degree-of-class-separation

For a classification method to be a truly objective proc
he alignment parameters that are input by the user mu
bjectively optimized. Optimization can be achieved by

ermining the alignment parameters that yield the gre
egree-of-class-separation between two clusters of scor

wo sample types in the training set on a PCA scores plo
versus PC 2). The degree-of-class-separation metric

ides a numeric measure of the quality of clustering with
CA scores plot, as well as the classification by PCA.
an be used to evaluate the improvement in the PCA cla
ation after data preprocessing or as a metric to optimiz
nput parameter values for a particular data set. For this w
he degree-of-class-separation on a scores plot was defi
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Fig. 1. Flowchart diagram of the piecewise alignment, ANOVA feature selection, and PCA classification process using a training set for optimization of the
parameters, then application of those optimal parameters to a test set for classification.

the class-to-class variance divided by the sum of the within-
class variance on a scores plot using two sample types in the
training set. In other words, the degree-of-class-separation is
the Euclidean distance between the centroids of two groups
of sample replicates (DA,B, where A and B are two differ-
ent sample types) divided by the square root of the summed
variances in the Euclidean distance of each sample replicate
relative to the centroid of its group as in Eq.(1):

Degree-of-class-separation= DA,B√
s2
A + s2

B

(1)

The variance is defined as the square of the standard deviation
(s) of the distance of each score in a group from the centroid
of that group.

The centroids of groups A and B are located at (X̄A, ȲA)
and (X̄B, ȲB) on a plot of PC 1 versus PC 2 wherēXA is the
mean of the scores for the samples in A on PC 1 andȲA is the

mean of the scores for the samples in A on PC 2, determined
using Eqs.(2) and (3):

X̄A =
∑n

j=1xA,j,PC 1

n
(2)

ȲA =
∑n

j=1yA,j,PC 2

n
(3)

The Euclidean distance between these centroids,DA,B, is cal-
culated as in Eq.(4).

DA,B =
√

(|X̄A − X̄B|2 + |ȲA − ȲB|2) (4)

2.3. Analysis of variance (ANOVA) feature selection

ANOVA-based feature selection was explained in detail
in a previous publication[20] and a brief introduction is
included here. Feature selection discards chromatographic
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signals that are not useful for classification, while primarily
retaining signals that have chemical information correlating
with sample groups[18,20–22]. Features that have a large
Fisher ratio are retained, where the Fisher ratio is the class-
to-class variance in the chromatographic signal divided by the
summed within-class variances in the chromatographic signal
for a training set of known sample types[18,20]. Note that the
Fisher ratio calculation uses the actual chromatographic sig-
nal to indicate how much classification information is in each
chromatographic peak while the degree-of-class-separation
uses the scores on a PCA plot to indicate how successful
classification is based on clustering. The ANOVA program
first calculates a Fisher ratio for each point along the reten-
tion time axis for the training set. Then, the features that have
Fisher ratios above a defined threshold can be extracted from
the test set data. A pattern recognition method is applied (e.g.,
PCA) to this reduced data set for classification. ANOVA fea-
ture selection is a partially supervised classification method
where the training set can be composed of fewer classes than
are in the test set. Two sample types are used for the training
set in this report.

2.4. Linear discriminant analysis

Linear discriminant analysis (LDA) is a traditional statis-
tical approach for supervised classification and pattern recog-
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tion. Each window in the sample chromatogram is iteratively
shifted point-by-point by the algorithm, within a specified
limit of the maximum shift allowed (limit =L), along the re-
tention time axis, where a point is defined as the actual data
points collected during data acquisition. The Pearson corre-
lation coefficient between the sample and target is calculated
at each shift[20,21]. Solely for the purpose of determining
the correlation coefficient at each shift, the algorithm applies
a temporary Wallis filter to both the sample and target chro-
matograms in order to minimize the effect of varying peak
heights[11,12]. As the Wallis-filtered alignment window of
lengthW is shifted, point-by-point, along the retention time
axis, a list of correlation coefficients is generated. The shift
that gives the maximum correlation coefficient is used to cor-
rect that window of the sample chromatogram. The desired
retention time corrections are assigned to the center point
of the windows. The shifts to be applied in regions between
window centers are calculated by linear interpolation.

3. Experimental

Unleaded gasoline samples with an octane rating of 89
were arbitrarily obtained from the pump at five local gaso-
line stations (Seattle, WA, USA): Type A (A), Type C (C),
Type M (M), Type S (S), and Type T (T). These five fuels were
a pped
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ition [18,19,22,23]. LDA requires that representative sa
les from all of the classes in the test set be presen

dentified in the training set. The linear discrimination fu
ion then fits a multivariate normal density to each grou
he training set, with a pooled estimate of covariance to
ermine class membership for individual chromatogram
ernately treated as unknowns[19]. The algorithm classifie
he samples by type and yields a percentile misclassific
ate for each sample present in the test set. The improve
n LDA misclassification rates at each step of the classi
ion method are used to show that both alignment and fe
election are beneficial for successful classification by L
ince LDA is a common pattern recognition method,
sed to validate the improvements in PCA clustering at
tep.

.5. Piecewise alignment algorithm

The piecewise alignment algorithm performs reten
ime alignment for a target chromatogram and sample c
atograms from various classes. Piecewise alignme

chematically depicted inFig. 1. Piecewise alignment b
ins by choosing or generating the target chromatogra

his case, the target was a chromatogram randomly ch
rom the training set. In the next step, the sample and t
hromatograms are divided into windows of a user-spec
ength (window length =W). Every window in the samp
hromatogram contains multiple chromatographic peaks
t is assumed that the shifting in these windows is a sc
ffset rather than a more complicated stretch or shrink f
nalyzed with an Agilent 6890 gas chromatograph equi
ith an electronic pressure controller and a flame ioniza
etector (FID). The separation column was fused-silica

llary, 10 m long, with a 100�m diameter, and a 0.4�m DB-
stationary phase. The inlet temperature was 275◦C and a

00:1 split ratio was used with a temperature program se
ially at 30◦C for 2 min, then ramped at 25◦C/min to 200◦C.
ach sample was run in replicate for five consecutive

o yield a data set of 210 chromatograms (40 A, 40 C
, 45 S, and 40 T). FID readings were acquired at a ra
0 Hz. The chromatograms were imported from Chemst
Agilent Technologies, Palo Alto, CA, USA) into Matlab 6
The Mathworks, Natick, MA, USA) where the alignme
nd chemometric analyses were performed on a Pent

ntel 2.8 GHz processor with 1 GB of RAM and Micros
000 Operating System. Each chromatogram was loade
Matlab workspace as a vector composed of the FID s
athered over the duration of the GC run. The chromatog

or the training set and the test set were appended into a m
here each row was a chromatogram.
The chromatograms were individually baseline corre

y subtracting the best-fit line through the first and last 2
he chromatogram (regions of baseline noise only) from
ntire length of the chromatogram. The chromatograms

ndividually normalized to account for injection volume de
tions by dividing each data point in the chromatogram b
um of the absolute value of all the data points in the c
atogram. This baseline corrected and normalized da

eferred to as unaligned data. The training set was comp
f 25 Type M and 25 Type S replicates that were run ove
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course of 5 days (5 of each per day) while gathering the entire
set of A, C, M, S, and T replicate chromatograms. It is impor-
tant to have training set chromatograms from each of the days
that test set data are collected in order to obtain optimal reten-
tion time alignment parameters. The test set was composed
of the remaining 40 A, 40 C, 20 M, 20 S, and 40 T repli-
cates. Prior to PCA, the data were mean-centered. The LDA
algorithm was run 1000 times and averaged to yield a misclas-
sification rate for each sample at each of the data processing
stages. The ANOVA feature selection program was written in
house[20]. The PCA and LDA algorithms were from Eigen-
vector’s PLS Toolbox (Eigenvector Research, Inc., Manson,
WA, USA). The Matlab implementation for COW was down-
loaded fromwww.models.kvl.dk/source.

4. Results and discussion

4.1. Data set characteristics

A typical chromatogram of one of the fuels is shown in
Fig. 2A. Fuels are mixtures of many chemical components
that yield complex chromatograms. The fuels were very sim-
ilar in both their number and type of chemical components,
however, many compounds varied in amount between sam-
ples and a smaller number of compounds were absent in some
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Fig. 2. (A) A typical gas chromatogram of a gasoline sample. (B) Scores
plot from PCA of unaligned chromatograms (all chromatograms). Retention
time variation and other sources of variation that were not related to class
differences led to poor clustering among replicate chromatograms. Gasoline
samples: A = Type A, C = Type C, M = Type M, S = Type S, T = Type T.

4.3. Piecewise alignment demonstration

Visual inspection of the training set data (25 M and 25 S
collected 5 each per day over 5 days) revealed that retention
time shifting was present in the raw chromatograms. In an
effort to rid the data set of retention time variation, the raw
data set was subjected to piecewise alignment. An overlay of
a section of the chromatograms is shown inFig. 3A (before
alignment) and inFig. 3B (after piecewise alignment with
W = 10 s,L = 1.5 s). Run-to-run retention time shifting is ap-
parent inFig. 3A, but after piecewise alignment was applied
to the training set the retention time shifting was corrected
as seen inFig. 3B. The standard deviations (s) of the loca-
tions of the peaks shown inFig. 3A and B were evaluated
to quantify the improvement gained from piecewise align-
ment. These standard deviations were significantly reduced
for the five peaks indicated. Overall, the retention time pre-
amples. Retention time alignment, as discussed in Sec2,
etains this chemical selectivity. Chemometric data redu
ANOVA feature selection) and pattern recognition meth
PCA) are a natural choice for analysis of such comp
nter-related data.

.2. PCA and LDA applied to unaligned raw data

When PCA was applied to the unaligned data set (t
ng set combined with test set), in the scores plot inFig. 2B,
C 1 captured 35% of the variance and PC 2 captured
f the variance. PCA alone was not able to provide a
ate clustering of the chromatograms by fuel type. The T

replicates (A) are separated from the other types o
ls, but the remaining four fuels are clustered together. T
nsupervised PCA classification using unaligned raw

ails. On the other hand, fully supervised LDA applied
he first 10 PCs of the unaligned data resulted in pe
lassification for A, S, and T, but M had a 10% miscla
cation rate and C had a 7.5% misclassification rate. H
ver, LDA requires standards of all sample types prese
he test set, which may not be feasible in most applica
f interest when not all sample sources are known be
and. PCA is an unsupervised pattern recognition tool
CA alone failed to capture the class variations. This pro

he development of a partially supervised method of clas
ation that can use knowledge of two samples to imp
CA clustering for all five of the unknown samples, i

mplementing retention time alignment and ANOVA feat
election.

http://www.models.kvl.dk/source
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Fig. 3. Selected region of training set data (A) before piecewise alignment
and (B) after piecewise alignment (W = 10 s andL = 1.5 s). An improvement
in retention time precision provided by piecewise alignment is noted by com-
paring the run-to-run peak retention time precision before and after align-
ment. The improvement is quantified by comparing four times the standard
deviation (s) of peak locations.

cision from run-to-run was improved along the entire length
of the chromatographic axis.

4.4. ANOVA feature selection demonstration after
piecewise alignment

Coupling alignment with ANOVA feature selection should
enhance the multivariate classification by reducing the data
set and allowing the pattern recognition tool to focus on chem-
ical variations rather than other sources of variation[1,13].
When ANOVA feature selection is applied to a data set, repli-
cates from as few as two samples need to be identified. The
training set of M and S replicates used in the previous section
was chosen for the ANOVA training set, in order to be con-
sistent for the subsequent alignment parameter optimization.
Samples from other classes could have been chosen with sim-
ilar results, but are not reported herein for brevity.Fig. 4A
contains the training set Fisher ratios calculated by ANOVA

Fig. 4. Analysis of variance (ANOVA) feature selection. Fisher ratios calcu-
lated by ANOVA after piecewise alignment (W = 10 s andL = 1.5 s) for the
training set (25 M and 25 S). The dashed line is an example of choosing a
threshold of 1000 that retains 3% of the data.

at each data point along the retention time axis after piecewise
alignment was applied (W = 10 s,L = 1.5 s). As the threshold
for the Fisher ratio increases the number of features retained
by feature selection decreases. At a Fisher ratio threshold of
zero, 100% of the data points in the chromatograms are re-
tained. Illustrated inFig. 4A is the example of a Fisher ratio
threshold of 1000, marked by a dashed line, where 3% of
the data is retained. ANOVA feature selection is shown to be
useful as a partially supervised data reduction tool whereby
indexing certain features based on the two-class training set
will reduce the five-class test set to features containing clas-
sification information. Ideally, the selected features will be
useful to distinguish the other sample classes that are in the
test set. We shall see in subsequent sections herein that this
is indeed the case.

4.5. Parameter optimization

The optimization of the piecewise alignment and fea-
ture selection parameters by analysis of the degree-of-class-
separation information is shown inFig. 5.

Objective selection of alignment parameters and feature
selection conditions was achieved using the training set.
The training set contained a smaller number of GC chro-
matograms (50), i.e., 25 M and 25 S collected 5 each per
d 160).
A
a tion
b imal
W ent,
a n the
t t. Fi-
n set
( set).
T gn-
m g set
ay over 5 days, than the test set of chromatograms (
s illustrated in Sections4.3 and 4.4, optimization ofW, L,
nd the ANOVA threshold was performed for classifica
y PCA using the selected training set. Then, the opt

andL are applied to the test set for objective alignm
nd the retention time indices of the features retained i

raining set are used to extract features from the test se
ally, PCA is applied for optimal classification of the test
or, if desired, the test set combined with the training
he quantitative metric used for optimization of the ali
ent and feature selection parameters using the trainin
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Fig. 5. Parameter optimization based on degree-of-class-separation. (A) PCA scores plot illustrating the degree-of-class-separation for the M and S training set,
for W = 10 s,L = 1.5 s, and threshold = 200. Degree-of-class-separation is defined as the class-to-class variance divided by the sum of the within-class variance
for the PCA scores of replicates of two classes in a training set. (B) Degree-of-class-separation between training set scores as a function of window size and
threshold. A reasonably optimal degree-of-class-separation was 9.2, achieved using the alignment parameters ofW = 10 s,L = 1.5 s, and ANOVA threshold = 200.
(C) Degree-of-class-separation as a function ofW for a constant threshold of 200 for piecewise alignment (L = 1.5 s). (D) Degree-of-class-separation as a function
of L with a constant threshold = 200 and constantW = 10 s. Degree-of-class-separation is independent of values ofL greater than 1.0 s (the maximum shift
present in the raw data).

is the degree-of-class-separation. As discussed in Section2,
an increase in the degree-of-class-separation quantifies an
improvement in PCA scores clustering as a function ofW, L,
and ANOVA threshold because it measures the distance be-
tween two clusters of scores as well as the tightness of each
cluster. An illustration of the degree-of-class-separation for
the training set is shown in the PCA scores plot inFig. 5A,
with the training set first submitted to piecewise alignment
(W = 10 s,L = 1.5 s), then feature selection (threshold = 200)
prior to PCA. In this case, applying Eqs.(1)–(4)the degree-
of-class-separation between the Type M and Type S training
set members was 9.2. The alignment parameters and feature

selection indices that yield the maximum degree-of-class-
separation are then applied to the test set, and presumed to
provide an acceptable PCA scores plot for classification.

The training set was subjected to piecewise alignment
and ANOVA feature selection for a range ofW values (with
L = 1.5 s) as well as for a range of ANOVA thresholds. The
degree-of-class-separation between the training set members
was determined for each of the resulting scores plots with the
results shown inFig. 5B. The other pair combinations of fu-
els were used as the training set and trends similar to those in
Fig. 5B were found for degree-of-class-separation as a func-
tion of W and threshold, though not shown here for brevity.
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According toFig. 5B, piecewise alignment coupled with fea-
ture selection, whereW = 10 s and threshold = 200, yielded a
reasonably optimal degree-of-class-separation (9.2) for the
training set (seeFig. 5A for PCA scores plot), while still us-
ing a reasonably low threshold. The reasonably low threshold
was chosen in order to more fully utilize the data for the all
the other sample types in the test set. Note that at a threshold
of 200, 16% of the piecewise aligned data are retained for
submission to PCA. For the fuels studied in this work, the
unaligned data, with no feature selection (Fig. 2B) yielded
the lowest degree-of-class-separation (0.4) between the M
and S training set classes on a scores plot. The degree-of-
class-separation for data submitted to piecewise alignment
alone ranged between 0.4 and 1.2 for 0 s≤ W ≤ 30 s. Con-
versely, ANOVA feature selection applied directly to the un-
aligned training set with a threshold of 500 does increase the
degree-of-class-separation (4.8). InFig. 5B, the leveling off in
degree-of-class-separation that occurs for each window size
as the threshold increases beyond∼200 is expected due to the
diminishing number of peaks that are retained after applying
ANOVA to the training set. The steep rise in the degree-of-
class-separation occurring at the beginning of each window
size trace is due to the removal of noise and features with
low Fisher ratios. The analysis of degree-of-class-separation
indicates that piecewise alignment needs to be coupled with
ANOVA feature selection in order to allow PCA to focus on
c PCA
s
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determines how severe the shifting is, and selects anL that is
larger than that shifting, without worrying about crossing an
upper limit ofL that might begin to affect the alignment. In
these GC data the retention time shifting was less than 1.5 s
so all of the work presented was performed withL = 1.5 s. To
validate this choice ofL, the degree-of-class-separation as a
function ofL was analyzed via the plot inFig. 5D for W = 10 s
and threshold = 200. From this plot one can see that limiting
the value ofL to 1.0 s or longer yields a consistently large
degree-of-class-separation, soL equal to 1.5 s is a suitably
optimal value forL.

4.6. PCA and LDA after optimal piecewise alignment
and ANOVA feature selection

Fig. 6A contains the scores plot for the test set combined
with the training set after submission to piecewise alignment
and ANOVA feature selection using the optimal parameters
(W = 10 s,L = 1.5 s, threshold = 200). PC 1 captured 66% of
the variance in the data and PC 2 captured 21% of the vari-
ance in the data. Interestingly, the degree-of-class-separation
for M and S training set members in the scores plot of the
optimally aligned and feature selected data set (combination
of test set and training set) was 22.6 (Fig. 6A) while being
only 9.2 for the training set submitted alone to optimal align-
ment and feature selection (Fig. 5B). This is due to the fact
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For each constant threshold inFig. 5B the degree-of
lass-separation increases with increasing window siz
o a value ofW = 10 s. However, for values ofW greate
han 10 s the degree-of-class-separation, as well a
lustering in the scores plots, slightly declines. Another v
f degree-of-class-separation changing as a functionW

or threshold = 200 is shown inFig. 5C. The slight decreas
n degree-of-class-separation that occurs forW > 10 s result
rom the fact that the retention time shifting in a wind
ength greater than 10 s can no longer be modeled by s
calar shifting. Window sizes ranging from 0 s (not align
p to 30 s were explored and were found to comply with
escribed trends. Although the degree-of-class-sepa
lightly decreases beyond the optimal value ofW (W = 10 s),
t is consistently higher than the degree-of-class-separ
or data that underwent no alignment or feature sele
lone when the window sizes are large (5 s≤ W ≤ 30 s).

As discussed in Section2, the piecewise alignment alg
ithm has two input parameters:W andL. Intuitively, the value
or L should be equal to or greater than the greatest am
f retention time shifting seen in the unaligned data. Th

ore, it can be concluded that as long asL is larger than th
reatest amount of shifting in the data, the value ofL should
ave no effect on the performance of piecewise alignm
he observation that alignment performance is only affe
hen L is too small (not whenL is too big) suggests th

he subjectivity of an analyst choosing the optimalL param-
ter is lessened. The analyst simply looks at the raw
hat as other classes of unknown chromatograms are
o the data set, PC 1 and PC 2 capture the more prom
hemical variations between the classes. At the same
he within-class variations for the Type S and Type M train
et members are buried in higher order PCs, thus dimi
ng the within-class variation for Type S and Type M sco
nd consequently increasing the degree-of-class-sepa

or the training set members. A degree-of-class separ
f 22.6 for M and S training set members inFig. 6A is a
ignificant improvement over the degree-of-class-separ
or M and S training set members in the combined train
nd test set inFig. 2B that was not submitted for alignme
0.9). The fuels are correctly and clearly grouped into
lusters corresponding to the five classes after optimal a
ent and feature selection inFig. 6A. Piecewise alignmen

ombined with feature selection also improved the su
ised LDA pattern recognition results compared to LDA
naligned data. Piecewise alignment with feature sele
ielded 100% accurate LDA classification rates for all
lasses. It is important to point out that LDA is a comple
upervised pattern recognition tool that requires a tra
et containing replicates of all five classes while the me
utlined herein is a partially supervised classification me

rained on replicates of only two classes.

.7. PCA and LDA after piecewise alignment only

PCA was applied to the combined test and training
et after it was submitted to optimized piecewise alignm
lone and the resulting scores plot is shown inFig. 6B. PC 1
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Fig. 6. Benefit of piecewise alignment coupled with ANOVA feature selection for PCA. (A) Scores plot after optimal piecewise alignment and feature selection
(W = 10 s,L = 1.5 s, threshold = 200). Every sample is correctly clustered into specific fuel type and each cluster is clearly separate from every other cluster.
(B) Scores plot of test set after only piecewise alignment (W = 10 s,L = 1.5 s). The A and S scores cluster more tightly compared to the unaligned data in
Fig. 2B indicating that piecewise alignment corrected retention time variation. (C) Scores plot of unaligned test set after only ANOVA feature selection was
applied (threshold = 500). The S and T scores cluster together and the C and M scores cluster together. Alignment coupled with feature selection is required for
successful classification by PCA. Gasoline samples: A = Type A, C = Type C, M = Type M, S = Type S, T = Type T.

captured 62% of the variance in the aligned data set while PC
2 captured 18% of the variance in the aligned data set. The
degree-of-class separation for M and S for the training set
alone under these conditions was 1.2 (Fig. 5B). The degree-
of-class-separation for the M and S training set members in
the combined training set and test set under these conditions
was only 1.6 (Fig. 6B). Only the A replicates were loosely
clustered in the unaligned data, but in this case, where the
optimal retention time alignment was applied to the test set
data, the A and S replicates are both more tightly clustered.
This indicates that superfluous retention time variation was
removed from the data by correcting retention time shifting.
However, the variations captured in the first two PCs did not
fully differentiate the samples. The A and S replicates were
more tightly clustered compared to unaligned data, but the
T, C, and M replicates were clustered together in one group.

Thus, PCA with piecewise alignment was an improvement
over no alignment, but was not fully sufficient to correctly
classify the test set data. Piecewise alignment also improved
the supervised LDA pattern recognition results over the LDA
of unaligned test set data. With LDA, alignment reduced the
misclassification rates for both M (2.5%) and C (5%), while
maintaining perfect classification rates for the other classes.
Thus, in order to further improve the classification, not only
alignment, but also feature selection, was required.

4.8. PCA after ANOVA feature selection of unaligned
data

Feature selection was applied directly to the unaligned
data (training set combined with test set) with a threshold
of 500.Fig. 6C contains the corresponding scores plot. The
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Fisher ratio threshold of 500 was chosen because it yielded
the maximum degree-of-class-separation (4.8) achievable by
applying feature selection alone to the training set accord-
ing to Fig. 5B. At this threshold, PC 1 captured 90% of the
variance in the data and PC 2 captured 9% of the variance.
The S and T scores clustered together as did the C and M
scores, despite the attempt to reduce the test set. The fact
that feature selection alone fails to classify the samples, but
alignment coupled with feature selection succeeds at clas-
sifying the samples, indicates that under the conditions for
Fig. 6C, PCA is likely modeling variations due to retention
time shifting rather than chemical variation.

4.9. Comparison to other alignment methods

A positive characteristic of piecewise alignment is that
it is written to be a fast algorithm that can quickly cor-
rect the retention time shifting in large data sets of complex
chromatograms. The piecewise alignment algorithm required
1 min to align 210 chromatograms in Matlab. The same set of
210 chromatograms aligned by the Matlab implementation of
COW (www.models.kvl.dk/source) required 8 min (for COW
the parameters were window = 200 data points and slack = 1
data point). Piecewise alignment works at a suitable pace that
makes it a good choice for inclusion in the optimized data re-
duction and classification method introduced in this report.
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alignment coupled with ANOVA feature selection prior to
PCA. Improvements due to alignment and feature selection
were noted with PCA clustering as well as with LDA.
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