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Abstract

A fast and objective chemometric classification method is developed and applied to the analysis of gas chromatography (GC) data from five
commercial gasoline samples. The gasoline samples serve as model mixtures, whereas the focus is on the development and demonstratio
of the classification method. The method is based on objective retention time alignment (referred to as piecewise alignment) coupled with
analysis of variance (ANOVA) feature selection prior to classification by principal component analysis (PCA) using optimal parameters. The
degree-of-class-separation is used as a metric to objectively optimize the alignment and feature selection parameters using a suitable training
set thereby reducing user subjectivity, as well as to indicate the success of the PCA clustering and classification. The degree-of-class-separatior
is calculated using Euclidean distances between the PCA scores of a subset of the replicate runs from two of the five fuel types, i.e., the
training set. The unaligned training set that was directly submitted to PCA had a low degree-of-class-separation (0.4), and the PCA scores
plot for the raw training set combined with the raw test set failed to correctly cluster the five sample types. After submitting the training set
to piecewise alignment, the degree-of-class-separation increased (1.2), but when the same alignment parameters were applied to the training
set combined with the test set, the scores plot clustering still did not yield five distinct groups. Applying feature selection to the unaligned
training set increased the degree-of-class-separation (4.8), but chemical variations were still obscured by retention time variation and when the
same feature selection conditions were used for the training set combined with the test set, only one of the five fuels was clustered correctly.
However, piecewise alignment coupled with feature selection yielded a reasonably optimal degree-of-class-separation for the training set
(9.2), and when the same alignment and ANOVA parameters were applied to the training set combined with the test set, the PCA scores plot
correctly classified the gasoline fingerprints into five distinct clusters.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction press such large volumes of data while retaining the essential
information in order to classify samples, do long-term com-
There is a need for efficient data processing methods for parisons, or perform batch-to-batch reproducibility studies.
the large volumes of data produced by modern analytical Analysts dealing with large data sets of micro-arrgds
instruments. For many applications, the analyst must com- spectroscopic profilef2,3] and 2D imageg4,5] use fea-
ture selection methods to reduce data sets down to features
_ containing the essential information. Chemometric pattern
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chemical variations in the dafé—14] Retention time vari- matograms and fewer sample classes than the entire data set
ations can be due to subtle, random, and often unavoidable(test set) of chromatograms to be evaluated.
variations in instrument parameters. Pressure, temperature This report is organized to describe the data reduction and
and flow rate fluctuations may cause an analyte to elute at aclassification method following the steps outlinedHig. 1
different retention time in replicate rufis2]. Matrix effects Initially, the piecewise alignment parameters and ANOVA-
and stationary phase decomposition may also cause retentiofbased feature selection conditions are optimized using a suit-
time shifting. Ideally, one would want a comprehensive data able training set and the degree-of-class-separation metric.
analysis procedure that combines retention time alignment ANOVA-based feature selection is used to objectively select
with feature selection and chemometric pattern recognition portions of the training set as a function of retention time.
in order to classify large data sets of complex chromatogramsThen, the unknown test set is aligned using the optimal pa-
with objectively optimized parameters. rameters. Next, the features that were selected in the training

Many retention time alignment algorithms have been re- set are extracted from the test set. PCA is then applied for
ported. Some alignment algorithms operate by aligning spe-optimal classification of the test set. Classification is based
cific features in the datfl3,15] However, there are many on clustering in the scores plot. Finally, descriptions of clas-
available alignment algorithms that, like piecewise alignment sification results using piecewise alignment alone or feature
reported herein, do not require knowledge or identification of selection alone are included to demonstrate the benefits of
peaks. These algorithms contain some level of dynamic pro- combining retention time alignment with ANOVA feature se-
gramming where iterated shifts are evaluated by a matchinglectionin order to allow PCA to focus on class variations. The
metric between the sample and target chromatogram. Thereported classification method results are compared to linear
matching metric indicates an optimal retention time correc- discriminant analysis (LDA) at each stage of processing the
tion for the sample. These algorithms fall under the categoriesdata.
of dynamic time warping6,16,17] genetic algorithm$8],
partial linear fit and minimization of residudi 10], correla-
tion optimized warping (COW)L1], and local retentiontime 2. Theory
alignment, also referred to as peakmatch alignrfi2it The
piecewise alignment algorithm applied in thisreportisaform  The following subsections describe the algorithms applied
of local retention time alignment that is also related to the for the classification method reported herein.
COW algorithm. COW operates by subdividing the data into
local regions, or windows, which are iteratively stretched and 2.1. Principal component analysis (PCA)
compressed by interpolation so as to maximize the correlation
between the sample and target chromatograms. COW seeks PCA is a data mining tool that is useful for providing un-
to find the global arrangement of stretches and shrinks thatsupervised visual classification of multivariate data like GC
maximize correlation between the target and sample chro-data[18,19] PCA converts each chromatographic vector into
matogramg11,16] Piecewise alignment is related to COW a single point in principal component space, essentially pro-
in that it operates by subdividing the data into windows, but jecting the data onto a new set of orthogonal axes (principal
then each window is iteratively shifted along the target chro- components, i.e., PCs) that are sorted in order according to
matogram within a specified limit to find the maximum cor- the amount of variance captured. If the captured variance
relation and the best correction for each window. Thus, in is relevant to chemical variations and sample classification,
comparison to COW, piecewise alignment does not apply the similar sample scores should cluster together on a scores plot
stretching and shrinking interpolation step just prior to cal- of PC 1 versus PC 2.
culating the correlation, thus saving computation time.

Herein, we introduce a data analysis procedure for re- 2.2. Degree-of-class-separation
ducing and classifying chromatographic data involving re-
tention time alignment, feature selection and chemometric  For a classification method to be a truly objective process,
pattern recognition with objectively optimized parameters. the alignment parameters that are input by the user must be
The piecewise retention time alignment algorithm is demon- objectively optimized. Optimization can be achieved by de-
strated to quickly provide retention time corrections for a termining the alignment parameters that yield the greatest
large GC data set of gasoline samples. It is shown that align-degree-of-class-separation between two clusters of scores for
ment combined with analysis of variance (ANOVA) feature two sample types in the training set on a PCA scores plot (PC
selection and submission to principal component analysis 1 versus PC 2). The degree-of-class-separation metric pro-
(PCA) yields proper classification of unknown gasoline chro- vides a numeric measure of the quality of clustering within a
matograms. In order to make the method more robust, user-PCA scores plot, as well as the classification by PCA. This
friendly and rapid to implement, it is demonstrated that the can be used to evaluate the improvement in the PCA classifi-
objective selection of alignment parameters and feature se-cation after data preprocessing or as a metric to optimize the
lection conditions can be achieved using a suitable training input parameter values for a particular data set. For this work,
set containing a substantially smaller number of GC chro- the degree-of-class-separation on a scores plot was defined as
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Fig. 1. Flowchart diagram of the piecewise alignment, ANOVA feature selection, and PCA classification process using a training set for optfrtfieation o
parameters, then application of those optimal parameters to a test set for classification.

the class-to-class variance divided by the sum of the within- mean of the scores for the samplesin A on PC 2, determined
class variance on a scores plot using two sample types in theusing Eqs(2) and (3)
training set. In other words, the degree-of-class-separation is "
the Euclidean distance between the centroids of two groupsy, — 2 j=1¥A.jPC1 @)
of sample replicatesy g, where A and B are two differ- n
ent sample types) divided by the square root of the summed S ‘

i . . : = j=1YA,jPC2
variances in the Euclidean distance of each sample replicateYa = ————
relative to the centroid of its group as in Ea): n

®3)

The Euclidean distance between these centrdids, is cal-
(1) culated as in Eq4).

\/S/ZVH% 2 2
Dag = V(XA — X2+ |Ya — Y8[2) @)

The variance is defined as the square of the standard deviation
(s) of the distance of each score in a group from the centroid 2.3. Analysis of variance (ANOVA) feature selection

: Da B
Degree-of-class-separatien -

of that group. o
The centroids of groups A and B are locatedXag (Ya) ANOVA-based feature selection was explained in detail
and (X, Yg) on a plot of PC 1 versus PC 2 whexXa, is the in a previous publicatiof20] and a brief introduction is

mean of the scores for the samples in A on PC 1¥0is$ the included here. Feature selection discards chromatographic
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signals that are not useful for classification, while primarily tion. Each window in the sample chromatogram is iteratively
retaining signals that have chemical information correlating shifted point-by-point by the algorithm, within a specified
with sample group$18,20—-22] Features that have a large limit of the maximum shift allowed (limit<), along the re-
Fisher ratio are retained, where the Fisher ratio is the class-tention time axis, where a point is defined as the actual data
to-class variance in the chromatographic signal divided by the points collected during data acquisition. The Pearson corre-
summed within-class variances in the chromatographic signallation coefficient between the sample and target is calculated
for atraining set of known sample typlds,20] Note that the at each shiff20,21] Solely for the purpose of determining
Fisher ratio calculation uses the actual chromatographic sig-the correlation coefficient at each shift, the algorithm applies
nal to indicate how much classification information is in each a temporary Wallis filter to both the sample and target chro-
chromatographic peak while the degree-of-class-separationmatograms in order to minimize the effect of varying peak
uses the scores on a PCA plot to indicate how successfulheights[11,12] As the Wallis-filtered alignment window of
classification is based on clustering. The ANOVA program lengthW is shifted, point-by-point, along the retention time
first calculates a Fisher ratio for each point along the reten- axis, a list of correlation coefficients is generated. The shift
tion time axis for the training set. Then, the features that have that gives the maximum correlation coefficient is used to cor-
Fisher ratios above a defined threshold can be extracted fronrect that window of the sample chromatogram. The desired
the test set data. A pattern recognition method is applied (e.g. retention time corrections are assigned to the center point
PCA) to this reduced data set for classification. ANOVA fea- of the windows. The shifts to be applied in regions between
ture selection is a partially supervised classification method window centers are calculated by linear interpolation.

where the training set can be composed of fewer classes than

are in the test set. Two sample types are used for the training

set in this report. 3. Experimental

2.4. Linear discriminant analysis Unleaded gasoline samples with an octane rating of 89
were arbitrarily obtained from the pump at five local gaso-
Linear discriminant analysis (LDA) is a traditional statis- line stations (Seattle, WA, USA): Type A (A), Type C (C),
tical approach for supervised classification and pattern recog-Type M (M), Type S (S), and Type T (T). These five fuels were
nition [18,19,22,23] LDA requires that representative sam- analyzed with an Agilent 6890 gas chromatograph equipped
ples from all of the classes in the test set be present andwith an electronic pressure controller and a flame ionization
identified in the training set. The linear discrimination func- detector (FID). The separation column was fused-silica cap-
tion then fits a multivariate normal density to each group in illary, 10 m long, with a 10Qum diameter, and a 04m DB-
the training set, with a pooled estimate of covariance to de- 5 stationary phase. The inlet temperature was°Z7and a
termine class membership for individual chromatograms al- 300:1 split ratio was used with a temperature program set ini-
ternately treated as unknowfi®]. The algorithm classifies tially at 30°C for 2 min, then ramped at 2&/min to 200°C.
the samples by type and yields a percentile misclassificationEach sample was run in replicate for five consecutive days
rate for each sample presentin the test set. The improvementso yield a data set of 210 chromatograms (40 A, 40 C, 45
in LDA misclassification rates at each step of the classifica- M, 45 S, and 40 T). FID readings were acquired at a rate of
tion method are used to show that both alignment and feature20 Hz. The chromatograms were imported from Chemstation
selection are beneficial for successful classification by LDA. (Agilent Technologies, Palo Alto, CA, USA) into Matlab 6.1
Since LDA is a common pattern recognition method, it is (The Mathworks, Natick, MA, USA) where the alignment
used to validate the improvements in PCA clustering at eachand chemometric analyses were performed on a Pentium 4

step. Intel 2.8 GHz processor with 1 GB of RAM and Microsoft
2000 Operating System. Each chromatogram was loaded into
2.5. Piecewise alignment algorithm a Matlab workspace as a vector composed of the FID signal

gathered over the duration of the GC run. The chromatograms

The piecewise alignment algorithm performs retention forthetraining setand the test setwere appended into a matrix
time alignment for a target chromatogram and sample chro- where each row was a chromatogram.
matograms from various classes. Piecewise alignment is The chromatograms were individually baseline corrected
schematically depicted ifrig. 1 Piecewise alignment be- by subtracting the best-fit line through the first and last 2 s of
gins by choosing or generating the target chromatogram. Inthe chromatogram (regions of baseline noise only) from the
this case, the target was a chromatogram randomly choserentire length of the chromatogram. The chromatograms were
from the training set. In the next step, the sample and targetindividually normalized to account for injection volume devi-
chromatograms are divided into windows of a user-specified ations by dividing each data point in the chromatogram by the
length (window length #). Every window in the sample  sum of the absolute value of all the data points in the chro-
chromatogram contains multiple chromatographic peaks, andmatogram. This baseline corrected and normalized data is
it is assumed that the shifting in these windows is a scalar referred to as unaligned data. The training set was composed
offset rather than a more complicated stretch or shrink func- of 25 Type M and 25 Type S replicates that were run over the
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course of 5 days (5 of each per day) while gathering the entire 10 T T T T T T T T
setof A, C, M, S, and T replicate chromatograms. Itis impor-

tant to have training set chromatograms from each of the days 8-
that test set data are collected in order to obtain optimal reten-
tion time alignment parameters. The test set was composed 6

of the remaining 40 A, 40 C, 20 M, 20 S, and 40 T repli-
cates. Prior to PCA, the data were mean-centered. The LDA
algorithmwas run 1000times and averaged to yield a misclas-
sification rate for each sample at each of the data processing o
stages. The ANOVA feature selection program was written in
hous€g20]. The PCA and LDA algorithms were from Eigen-
vector's PLS Toolbox (Eigenvector Research, Inc., Manson,
WA, USA). The Matlab implementation for COW was down-
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4. Results and discussion
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A typical chromatogram of one of the fuels is shown in ‘g ! |
Fig. 2A. Fuels are mixtures of many chemical components X% | A A
that yield complex chromatograms. The fuels were very sim- & 1
ilar in both their number and type of chemical components, & AA% N
however, many compounds varied in amount between sam- § ©° An
ples and a smaller number of compounds were absentinsome  § A Aﬁ A
samples. Retention time alignment, as discussed in Segtion S I AP AA ]
retains this chemical selectivity. Chemometric data reduction @ &
(ANOVA feature selection) and pattern recognition methods -1 .
(PCA) are a natural choice for analysis of such complex, A
inter-related data. 1 y L L L
2 -1 0 1
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4.2. PCA and LDA applied to unaligned raw data

. . . Fig. 2. (A) A typical gas chromatogram of a gasoline sample. (B) Scores
When PCA was applied to the unaligned data set (train- piot from PCA of unaligned chromatograms (all chromatograms). Retention
ing set combined with test set), in the scores pldtim 2B, time variation and other sources of variation that were not related to class

PC 1 captured 35% of the variance and PC 2 captured 27%lifferences led to poor clustering among replicate chromatograms. Gasoline
of the variance. PCA alone was not able to provide accu- Samples: A=Type A, C=Type C, M=Type M, S=Type S, T=Type T.

rate clustering of the chromatograms by fuel type. The Type

A replicates (A) are separated from the other types of fu- 4.3. Piecewise alignment demonstration

els, but the remaining four fuels are clustered together. Thus,

unsupervised PCA classification using unaligned raw data Visual inspection of the training set data (25 M and 25 S
fails. On the other hand, fully supervised LDA applied to collected 5 each per day over 5 days) revealed that retention
the first 10 PCs of the unaligned data resulted in perfect time shifting was present in the raw chromatograms. In an
classification for A, S, and T, but M had a 10% misclassi- effort to rid the data set of retention time variation, the raw
fication rate and C had a 7.5% misclassification rate. How- data set was subjected to piecewise alignment. An overlay of
ever, LDA requires standards of all sample types present ina section of the chromatograms is showrkig. 3A (before

the test set, which may not be feasible in most applications alignment) and irFig. 3B (after piecewise alignment with

of interest when not all sample sources are known before- W=10s,L=1.5s). Run-to-run retention time shifting is ap-
hand. PCA is an unsupervised pattern recognition tool, but parent inFig. 3A, but after piecewise alignment was applied
PCA alone failed to capture the class variations. This promptsto the training set the retention time shifting was corrected
the development of a partially supervised method of classifi- as seen irFig. 3B. The standard deviations)(of the loca-
cation that can use knowledge of two samples to improve tions of the peaks shown iRig. 3A and B were evaluated
PCA clustering for all five of the unknown samples, i.e., to quantify the improvement gained from piecewise align-
implementing retention time alignment and ANOVA feature ment. These standard deviations were significantly reduced
selection. for the five peaks indicated. Overall, the retention time pre-
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2 § Type S alignment was applied{=10s,L=1.5s). As the threshold
o 3f o, § m @ 2 for the Fisher ratio increases the number of features retained
w § - T 5 5 by feature selection decreases. At a Fisher ratio threshold of
2} @ % g g 8 zero, 100% of the data points in the chromatograms are re-
a ¢ 0 = & tained. lllustrated irFig. 4A is the example of a Fisher ratio
S S 3 3 threshold of 1000, marked by a dashed line, where 3% of
‘: < ~ i the data is retained. ANOVA feature selection is shown to be
0 rasadll A ) - ) n useful as a partially supervised data reduction tool whereby
3.68 3.72 3.76 3.8 3.84 indexing certain features based on the two-class training set
(B) Retention Time (minutes) will reduce the five-class test set to features containing clas-

_ _ N _ o sification information. Ideally, the selected features will be
Fig. 3. Selected region of training set data (A) before piecewise alignment \,5afy| to distinguish the other sample classes that are in the

d (B) after pi ise ali 10 =1.5s). Ani t . . . .
and (B) after piecewise alignmen¥¢=10s and.=15s). Animprovement o oot \We shall see in subsequent sections herein that this
in retention time precision provided by piecewise alignmentis noted by com-

paring the run-to-run peak retention time precision before and after align- 1S indeed the case.
ment. The improvement is quantified by comparing four times the standard

deviation §) of peak locations. 4.5. Parameter optimization

cision from run-to-run was improved along the entire length ¢ optimization of the piecewise alignment and fea-

of the chromatographic axis. ture selection parameters by analysis of the degree-of-class-
separation information is shown ffig. 5.

4.4. ANOVA feature selection demonstration after Objective selection of alignment parameters and feature

piecewise alignment selection conditions was achieved using the training set.

The training set contained a smaller number of GC chro-

Coupling alignment with ANOVA feature selectionshould matograms (50), i.e., 25 M and 25 S collected 5 each per
enhance the multivariate classification by reducing the dataday over 5 days, than the test set of chromatograms (160).
setand allowing the pattern recognition tool to focus on chem- As illustrated in Sectiond.3 and 4.4optimization ofW, L,
ical variations rather than other sources of variaftbi3]. and the ANOVA threshold was performed for classification
When ANOVA feature selection is applied to a data set, repli- by PCA using the selected training set. Then, the optimal
cates from as few as two samples need to be identified. TheW andL are applied to the test set for objective alignment,
training set of M and S replicates used in the previous sectionand the retention time indices of the features retained in the
was chosen for the ANOVA training set, in order to be con- training set are used to extract features from the test set. Fi-
sistent for the subsequent alignment parameter optimization.nally, PCA is applied for optimal classification of the test set
Samples from other classes could have been chosen with sim{or, if desired, the test set combined with the training set).
ilar results, but are not reported herein for brevitig. 4A The quantitative metric used for optimization of the align-
contains the training set Fisher ratios calculated by ANOVA ment and feature selection parameters using the training set
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Fig. 5. Parameter optimization based on degree-of-class-separation. (A) PCA scores plot illustrating the degree-of-class-separatiord& tifzérihgset,

for W=10s,L=1.55, and threshold = 200. Degree-of-class-separation is defined as the class-to-class variance divided by the sum of the within-class variance
for the PCA scores of replicates of two classes in a training set. (B) Degree-of-class-separation between training set scores as a functionzg eumtiow s
threshold. A reasonably optimal degree-of-class-separation was 9.2, achieved using the alignment para¥veldrys ¢f= 1.5 s, and ANOVA threshold = 200.

(C) Degree-of-class-separation as a functioWddr a constant threshold of 200 for piecewise alignmért{.5 s). (D) Degree-of-class-separation as a function

of L with a constant threshold =200 and constéht 10 s. Degree-of-class-separation is independent of valueggodater than 1.0 s (the maximum shift

present in the raw data).

is the degree-of-class-separation. As discussed in Segtion selection indices that yield the maximum degree-of-class-
an increase in the degree-of-class-separation quantifies arseparation are then applied to the test set, and presumed to
improvement in PCA scores clustering as a functioi/ot., provide an acceptable PCA scores plot for classification.

and ANOVA threshold because it measures the distance be- The training set was subjected to piecewise alignment
tween two clusters of scores as well as the tightness of eachand ANOVA feature selection for a range Wfvalues (with
cluster. An illustration of the degree-of-class-separation for L=1.5s) as well as for a range of ANOVA thresholds. The
the training set is shown in the PCA scores ploFig. 5A, degree-of-class-separation between the training set members
with the training set first submitted to piecewise alignment was determined for each of the resulting scores plots with the
(W=10s,L=1.55s), then feature selection (threshold =200) results shown ifrig. 5B. The other pair combinations of fu-
prior to PCA. In this case, applying Eq4)—(4)the degree-  els were used as the training set and trends similar to those in
of-class-separation between the Type M and Type S training Fig. 5B were found for degree-of-class-separation as a func-
set members was 9.2. The alignment parameters and featuréion of W and threshold, though not shown here for brevity.
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According toFig. 5B, piecewise alignment coupled with fea- determines how severe the shifting is, and selecistaat is
ture selection, wher#=10s and threshold =200, yielded a larger than that shifting, without worrying about crossing an
reasonably optimal degree-of-class-separation (9.2) for theupper limit of L that might begin to affect the alignment. In
training set (se€ig. 5A for PCA scores plot), while stillus-  these GC data the retention time shifting was less than 1.5s
ing a reasonably low threshold. The reasonably low threshold so all of the work presented was performed with1.5s. To
was chosen in order to more fully utilize the data for the all validate this choice of.,, the degree-of-class-separation as a
the other sample types in the test set. Note that at a thresholdunction ofZ was analyzed via the plot Fig. 5D for W=10s
of 200, 16% of the piecewise aligned data are retained for and threshold =200. From this plot one can see that limiting
submission to PCA. For the fuels studied in this work, the the value ofL to 1.0s or longer yields a consistently large
unaligned data, with no feature selectidfig 2B) yielded degree-of-class-separation, bequal to 1.5s is a suitably
the lowest degree-of-class-separation (0.4) between the Moptimal value forL.
and S training set classes on a scores plot. The degree-of-
class-separation for data submitted to piecewise alignment4.6. PCA and LDA after optimal piecewise alignment
alone ranged between 0.4 and 1.2 for<0W <30s. Con- and ANOVA feature selection
versely, ANOVA feature selection applied directly to the un-
aligned training set with a threshold of 500 does increase the  Fig. 6A contains the scores plot for the test set combined
degree-of-class-separation (4.8)Fig. 5B, the leveling offin with the training set after submission to piecewise alignment
degree-of-class-separation that occurs for each window sizeand ANOVA feature selection using the optimal parameters
asthe threshold increases beyerzDO is expected duetothe (W=10s,L=1.5s, threshold =200). PC 1 captured 66% of
diminishing number of peaks that are retained after applying the variance in the data and PC 2 captured 21% of the vari-
ANOVA to the training set. The steep rise in the degree-of- ance in the data. Interestingly, the degree-of-class-separation
class-separation occurring at the beginning of each windowfor M and S training set members in the scores plot of the
size trace is due to the removal of noise and features with optimally aligned and feature selected data set (combination
low Fisher ratios. The analysis of degree-of-class-separationof test set and training set) was 22Fd. 6A) while being
indicates that piecewise alignment needs to be coupled withonly 9.2 for the training set submitted alone to optimal align-
ANOVA feature selection in order to allow PCA to focus on ment and feature selectioRi¢. 5B). This is due to the fact
class variations for the best achievable clustering on a PCAthat as other classes of unknown chromatograms are added
scores plot. to the data set, PC 1 and PC 2 capture the more prominent
For each constant threshold Fig. 5B the degree-of-  chemical variations between the classes. At the same time,
class-separation increases with increasing window size upthe within-class variations for the Type S and Type M training
to a value of W=10s. However, for values oV greater set members are buried in higher order PCs, thus diminish-
than 10s the degree-of-class-separation, as well as thdng the within-class variation for Type S and Type M scores
clustering in the scores plots, slightly declines. Another view and consequently increasing the degree-of-class-separation
of degree-of-class-separation changing as a functiow of for the training set members. A degree-of-class separation
for threshold =200 is shown iRig. 5C. The slight decrease of 22.6 for M and S training set members kig. 6A is a
in degree-of-class-separation that occursior 10 s results significant improvement over the degree-of-class-separation
from the fact that the retention time shifting in a window for M and S training set members in the combined training
length greater than 10 s can no longer be modeled by simpleand test set ifrig. 2B that was not submitted for alignment
scalar shifting. Window sizes ranging from 0 s (not aligned) (0.9). The fuels are correctly and clearly grouped into five
up to 30 s were explored and were found to comply with the clusters corresponding to the five classes after optimal align-
described trends. Although the degree-of-class-separatiorment and feature selection Fig. 6A. Piecewise alignment
slightly decreases beyond the optimal valuéofWw=10s), combined with feature selection also improved the super-
it is consistently higher than the degree-of-class-separationvised LDA pattern recognition results compared to LDA for
for data that underwent no alignment or feature selection unaligned data. Piecewise alignment with feature selection
alone when the window sizes are large 6% < 305s). yielded 100% accurate LDA classification rates for all five
As discussed in Sectid®) the piecewise alignment algo-  classes. It is important to point out that LDA is a completely
rithm has two input parameteig:andL. Intuitively, the value supervised pattern recognition tool that requires a training
for L should be equal to or greater than the greatest amountset containing replicates of all five classes while the method
of retention time shifting seen in the unaligned data. There- outlined herein is a partially supervised classification method
fore, it can be concluded that as longlas larger than the  trained on replicates of only two classes.
greatest amount of shifting in the data, the valué should
have no effect on the performance of piecewise alignment. 4.7. PCA and LDA after piecewise alignment only
The observation that alignment performance is only affected
when L is too small (not wherl is too big) suggests that PCA was applied to the combined test and training data
the subjectivity of an analyst choosing the optirhgdaram- set after it was submitted to optimized piecewise alignment
eter is lessened. The analyst simply looks at the raw data,alone and the resulting scores plot is showFig 68. PC 1
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Fig. 6. Benefit of piecewise alignment coupled with ANOVA feature selection for PCA. (A) Scores plot after optimal piecewise alignment and &stone sel
(W=10s,L=1.5s, threshold =200). Every sample is correctly clustered into specific fuel type and each cluster is clearly separate from every other cluster.
(B) Scores plot of test set after only piecewise alignmént(0s,L=1.5s). The A and S scores cluster more tightly compared to the unaligned data in

Fig. 2B indicating that piecewise alignment corrected retention time variation. (C) Scores plot of unaligned test set after only ANOVA feature sadection w
applied (threshold =500). The S and T scores cluster together and the C and M scores cluster together. Alignment coupled with feature sel@etidhois requ
successful classification by PCA. Gasoline samples: A=Type A, C=Type C, M=Type M, S=Type S, T=Type T.

captured 62% of the variance in the aligned data set while PCThus, PCA with piecewise alignment was an improvement
2 captured 18% of the variance in the aligned data set. Theover no alignment, but was not fully sufficient to correctly
degree-of-class separation for M and S for the training set classify the test set data. Piecewise alignment also improved
alone under these conditions was IF&)( 5B). The degree-  the supervised LDA pattern recognition results over the LDA
of-class-separation for the M and S training set members in of unaligned test set data. With LDA, alignment reduced the
the combined training set and test set under these conditiongnisclassification rates for both M (2.5%) and C (5%), while
was only 1.6 Fig. 6B). Only the A replicates were loosely maintaining perfect classification rates for the other classes.
clustered in the unaligned data, but in this case, where theThus, in order to further improve the classification, not only
optimal retention time alignment was applied to the test set alignment, but also feature selection, was required.

data, the A and S replicates are both more tightly clustered.

This indicates that superfluous retention time variation was 4.8. PCA after ANOVA feature selection of unaligned

removed from the data by correcting retention time shifting. data

However, the variations captured in the first two PCs did not

fully differentiate the samples. The A and S replicates were  Feature selection was applied directly to the unaligned
more tightly clustered compared to unaligned data, but the data (training set combined with test set) with a threshold
T, C, and M replicates were clustered together in one group. of 500.Fig. 6C contains the corresponding scores plot. The
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Fisher ratio threshold of 500 was chosen because it yieldedalignment coupled with ANOVA feature selection prior to
the maximum degree-of-class-separation (4.8) achievable byPCA. Improvements due to alignment and feature selection
applying feature selection alone to the training set accord- were noted with PCA clustering as well as with LDA.

ing to Fig. 5B. At this threshold, PC 1 captured 90% of the

variance in the data and PC 2 captured 9% of the variance.

The S and T scores clustered together as did the C and MAcknowledgments
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